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Glossary
Episodic memory – Memory for specific events in the

past.

Mental context – Any information that is actively

represented in a person’s brain at the time they are

processing a particular stimulus.

Semantic memory – Memory for meanings.

The goal of learning and memory research is to under-
stand how we store and retrieve information based on our
experiences. Toward this end, computational models pro-
vide formal implementations of memory theories; these
formal implementations facilitate hypothesis testing and
the generation of novel predictions. Computational models
of memory are constrained in two directions. One goal of
memory modeling research is to capture the behaviors that
participants exhibit during memory tasks. Another goal is
to explain how the brain gives rise to these behaviors.
High-level, abstract models focus on reproducing behavior
but not neural data, whereas biologically based models
attempt to explain both neural and behavioral data. This
article focuses on models of declarative memory, which can
be divided into two components: episodic and semantic
memory. The first section of the article describes abstract
models of episodic memory, our ability to remember spe-
cific, previously experienced events. The second section
describes abstract models of semantic memory – our ability
to learn and remember the meanings of stimuli. The final
section describes the Complementary Learning Systems
(CLS) model, which seeks to account for both semantic
and episodic memory phenomena within a single, biologi-
cally plausible computational framework.

Abstract Models of Episodic Memory

Episodic memory experiments typically consist of a study
phase (where subjects are exposed to a set of stimuli)
followed by a test phase. The test phase takes the form
of either a recognition-memory test (where subjects have
to discriminate between studied and nonstudied stimuli)
or a recall test (where subjects have to retrieve specific
details from the study phase of the experiment). Abstract
models of episodic memory try to describe the mental
algorithms that support performance on recognition and

recall tests, without specifically addressing how these
algorithms might be implemented in the brain. Although
there is considerable diversity within the realm of abstract
episodic memory models, most of the abstract models that
are currently in use share a common set of properties:
Individual memories, commonly refered to as memory
traces, are typically represented as vectors – where each
element of that vector represents a particular feature of
the memory. At study, memory traces are placed sepa-
rately in a long-term store. Because of this ‘separate
storage’ postulate, acquiring new memory traces does
not affect the integrity of previously stored memory
traces. At test, the model computes the match between
the test cue and all of the items stored in memory. This
item-by-item match information can be summed across
all items to compute a ‘global-match’ familiarity signal.
Most abstract models posit that subjects make recogni-
tion-memory judgments based on the strength of the
global-match familiarity signal (i.e., the stronger the
match, the more likely it is that the item was studied).
Some abstract models that conform to this overall struc-
ture are Search of Associative Memory (SAM) model
(first implemented by Raaijmakers and Shiffrin),
Retrieving Effectively from Memory (REM) model (first
implemented by Shiffrin and Steyvers), and MINERVA 2
(developed by Hintzman).

In abstract models, the same ‘match’ rule that is used to
compute the global-match familiarity signal is also used
when simulating recall tasks, although the specific way in
which the match rule is used during recall differs from
model to model. For example, MINERVA 2 simulates
recall by computing a weighted sum of all of the items
stored in memory, where each item is weighted by how
well it matches the test cue. In contrast, models like SAM
and REM use the individual match scores to determine
which (individual) memory trace will be recalled.

Collectively, abstract models have been very success-
ful in explaining behavioral recall and recognition data
from normal subjects. They have also been used to
explain data from memory-impaired subjects, by finding
a set of parameter changes that lead to the desired pattern
of memory deficits. The remaining part of this section
presents a detailed description of the REM model. REM
is highlighted because of its principled mathematical
foundation, and because (of all of the models mentioned
above) it is the abstract model that is being developed and
applied most actively.
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The REM Model of Recognition and Recall

The REM model, first published by Shiffrin and Steyvers
in 1997, is the most recent iteration of a line of models
that dates back to the SAM model that was published by
Raaijmakers and Shiffrin in 1981. One of the main differ-
ences between REM and previous models like SAM and
MINERVA 2 is that REM implements a principled
Bayesian calculation of the likelihood that the cue
‘matches’ (i.e., corresponds to the same item as) a parti-
cular stored memory trace, whereas the match calculation
was not defined in Bayesian terms in previous models.

In REM, items are vectors of features whose values are
geometrically distributed integers. The primary conse-
quence of feature values being distributed geometrically is
that high-feature values are less common than low-feature
values.When an item is studied, the features of that item are
copied into an episodic trace for that item via a two-step
process. First, each feature is stored with a specified prob-
ability that is a parameter of the model. If a feature is stored,
then a second probability determines whether that feature is
stored correctly or whether it is replaced by a value
sampled from the geometric distribution. A zero value
means that no value is stored for the feature.

At test, the retrieval cue is compared to each stored
memory trace. For each trace, the model calculates the
likelihood that the cue and the trace match (i.e., they
correspond to the same item). This likelihood is based on
two probabilities: the probability of obtaining the observed
pattern of matching and mismatching features – assuming
that the cue and trace correspond to the same item –
divided by the probability of obtaining the observed pat-
tern of matching and mismatching features, assuming that
the cue and trace correspond to different items.

The same core ‘match’ calculation is used for both
recognition and cued recall in REM. The model is applied
to recognition by computing the overall odds that the item
is old (vs. new), calculated as the average of the likelihood
values from the match calculations. If this odds value
exceeds a preset criterion then the item is called ‘old.’
The fact that the effects of individual feature matches
(and mismatches) are combined multiplicatively within
individual trace comparisons and additively across traces
ensures that multiple matches to a single trace have a larger
effect on the odds that an item is old than the same number
of feature-matches spread across multiple traces.

Recall (i.e., retrieval of specific stored details) in REM
has both a sampling component (which picks a single
trace out from the memory store) and a recovery compo-
nent (which determines whether the sampled memory
trace is retrieved successfully). The sampling probability
for each item is based on the match between the memory
cue and the item, scaled by the sum of the matches to all
items. Once an item is sampled, the probability that the
image will be recovered is based on the proportion of

correctly stored item features. Thus, in REM, well-
encoded items are more likely to be recovered than
poorly encoded items.

Recently, Malmberg and colleagues developed a dual-
process version of REM that utilizes both the ‘global-
match’ familiarity signal and the recall process described
above. When a test item is presented, the model computes
the global match and it also attempts to retrieve a specific
stored memory trace that matches the test item. The key
benefit of using recall is that it helps the model reject lures
that closely resemble studied items. For example, if
subjects study ‘rats’ but are tested with ‘rat,’ this test
item will trigger a strong global-match signal, but it may
also trigger recall that ‘rats’ was studied (not ‘rat’). This
mismatch between the test item and the retrieved
memory can be used to identify the item as a related
lure. Malmberg argues that subjects primarily use this
recall process to reject related lures, and that it does not
play a significant role in recognizing actually studied
items (this view is controversial).

Representative REM results
Researchers have demonstrated that REM can explain a
wide range of episodic memory findings. For example,
Shiffrin and Steyvers demonstrated that the ‘global-
match’ familiarity mechanism described above can
account for the list-length, list-strength, and word-fre-
quency effects in recognition memory.

The list-length effect refers to the finding that recog-
nition-memory performance tends to be lower for longer
versus shorter study lists. REM explains this effect
because adding words to the study list increases the
odds that the test item will spuriously match a stored
memory trace from the study list (i.e., the model will
conclude that the test item matches a stored memory
trace when in fact it does not). The (null) list-strength
effect refers to the finding that strengthening some list
items (by repeating the items or presenting them for
longer periods of time) does not impair recognition of
other, nonstrengthened items. REM explains this effect
because strong items have more features stored (i.e., they
have more ‘differentiated’ memory representations) and
thus are less likely to be confused with other test items.
The word-frequency effect refers to the finding that
words that occur with high frequency in natural language
are recognized less well than low-frequency words. In
REM, high-frequency words have more common feature-
values than low-frequency words, which makes them
more likely to be confused with other test items.

Context and Episodic Memory

While the basic REM model provides a mechanism for
how the memory system responds to a particular cue, it
does not describe how the memory system behaves when

146 Learning and Memory: Computational Models

Encyclopedia of Behavioral Neuroscience, 2010, Vol. 2, 145-153



Author's personal copy

external cues are less well specified, and subjects have
to generate their own cues in order to target a parti-
cular memory (or set of memories). Take the scenario
of trying to remember where you left your keys. The
most common advice in this situation is to reinstate
your mental context as a means of prompting recall – if
you succeed in remembering what you were doing and
what you were thinking earlier in the day, this will
boost the probability of recalling where you left the
keys. This idea of reinstating mental context plays a
key role in theories of strategic memory search. For the
purposes of this article, mental context can be defined
broadly as any other information that is actively repre-
sented in a person’s brain at the time they are
processing a particular stimulus.

Multiple laboratory paradigms have been developed to
examine strategic memory search. The most commonly
used paradigm is free recall, where subjects are given a
word list and are then asked to retrieve the studied word
list in any order. REM can be extended to simulate free
recall by adding a set of contextual features to each
memory trace. For example, all of the items in the study
list could be given a shared set of contextual features
(effectively, a ‘context tag’) that signify membership in
the study list. To simulate free recall, we can cue with this
‘list-context’ representation and sample items that were
paired with the list-context representation at study.
However, while this simple context-tag representation
gives REM the ability to simulate free recall, it does not
allow REM to simulate more nuanced features of free
recall data. To fit detailed patterns of free recall data, it
is necessary to specify in more detail how context changes
over time, and how context is used to cue memory at
retrieval.

The Temporal Context Model

The Temporal Context Model (TCM; first published
by Howard and Kahana) is the most recent in a long
succession of models that use a drifting mental context
to explain our ability to selectively target memories
from particular time periods. The basic idea behind
these models is that the subject’s inner mental context
(comprising the constellation of thoughts that are active
at a particular moment) changes gradually over time.
Early models viewed context as a vector that evolves as
a function of random noise when each item is pre-
sented, with a drift-rate parameter governing the
overlap of context from time-step to time-step. The
main difference between TCM and previous contex-
tual-drift models is that context does not drift
randomly in TCM. Rather, contextual updating is dri-
ven by the features of the items being studied and
recalled.

During the study phase of a memory experiment, two
things happen when an item is presented: first, the item is
associated with the state of the context vector at the time
of presentation; second, context is updated by averaging
together the current state of the context vector with the
semantic features of the just-studied item. At test, the
recall process is initiated by cuing with the current state
of the context vector, which (in turn) triggers retrieval of
items that were associated with these contextual elements
at study. Specifically, each item is activated to the degree
that the current state of context overlaps with the context
that was present when that item was studied. In the most
recent version of TCM, called TCM-A, these activated
items compete with one another via a set of accumulators
that add up evidence for each item over time (based on
that item’s level of activation and the activation levels of
all the other items). If the level of evidence for an item
reaches a prespecified threshold level, that item is
recalled, and the current state of context is updated in
two ways: first, by averaging in the semantic features of
the just-recalled item, and second, by averaging in the
state of the context vector that was present when the item
was studied. This latter updating operation can be con-
strued as ‘mentally jumping back in time’ to the moment
when the (just-retrieved) item was studied. Once the
context vector is updated, it is used to cue for additional
items, which leads to additional updating of the context
vector, and so on.

How TCM accounts for recall data
The drifting context vector in TCM explains a number of
findings in episodic recall, including both recency and
contiguity effects. In TCM, the current state of context
acts as the cue for memory retrieval via context-to-item
associations. Because context changes gradually, the state
of context at the time of test will overlap most strongly
with the contexts associated with recent items. This gives
rise to the recency effect seen in all episodic memory
tasks. TCM can also explain the temporal contiguity
effect: the finding that, when a subject recalls a particular
item from the study list, they show an increased prob-
ability of (subsequently) recalling items from nearby time
points in the list. TCM shows this effect because recalling
an item (at test) also triggers recall of the contextual state
that was present when the item was studied. This
retrieved context will closely match contextual states
associated with temporally proximal items, thereby mak-
ing it easier to retrieve these items. For example, the
contextual state associated with the fourth item on the
study list will closely match the contextual states asso-
ciated with the third and fifth items; thus, recalling the
‘fourth-item’ context will make it easier to access the third
and fifth items.

Learning and Memory: Computational Models 147

Encyclopedia of Behavioral Neuroscience, 2010, Vol. 2, 145-153



Author's personal copy

Abstract Models of Semantic Memory

Earlier, we defined semantic memory as the ability to
learn and remember the meanings of stimuli. More con-
cretely, semantic memory is our ability to construct an
internal representation of the world that allows us to
make predictions about ‘unseen’ aspects of stimuli. For
example, the semantic memory system allows us to cate-
gorize the pig we see at the petting zoo as a mammal and
to generalize that it has a brain and gives birth to its
children alive following a gestation period, without hav-
ing to take a magnetic resonance image of the pig’s head
or watch it give birth. The semantic memory system also
allows our friends to retrieve these basic features of a pig
when we recount seeing a pig at the petting zoo.

Rumelhart Model of Semantic Cognition

We focus on the model of semantic memory developed by
David Rumelhart and colleagues, because it is the sim-
plest extant model that explains how we develop internal
representations and make predictions using these repre-
sentations. Our discussion here draws heavily on recent
work using this model by Rogers and McClelland.

The goal of the Rumelhart model is to activate the
proper set of attributes when probed with an item (e.g.,
‘pig’) and relation (e.g., ‘can’). The basic structure of the
Rumelhart model (see schematic in Figure 1) consists of
multiple layers of units connected in a feedforward fash-
ion. The item units specify the objects that are being
observed, the relation units specify the contexts in which
we observe these objects, and the attribute units specify

the ‘unseen’ aspects of the objects that we are trying to
predict. When the network is probed by activating an item
unit and a relation unit, activation spreads forward in the
network (through the representational layer and the hid-
den layer) until it reaches the attribute layer. The spread
of activation is governed by the strengths of connections
between units, and the resulting pattern of activity in the
attribute layer constitutes the model’s prediction (e.g., ‘pig’
þ ‘can’ should yield ‘walk’ in the attribute layer). A critical
aspect of the model is that it does not prespecify what
patterns should appear in the representational and hidden
layers. Rather, the network learns to generate patterns in
these layers (by adjusting weights) that help it predict the
correct attributes. The pattern of activity in the represen-
tational layer serves as the primary representation of the
item’s meaning, whereas the pattern of activity in the
hidden layer represents the meaning of the item in the
context of a particular relation.

A central aspect of the Rumelhart model is that it
learns to make better predictions by adjusting connection
strengths. Learning takes place incrementally over many
presentations of item, relational, and attributational pat-
terns (i.e., seeing a fish swim in water would be
represented by activating the ‘fish’ item unit, the ‘can’
relation unit, and the ‘swim’ attribute unit). On each
trial, after generating its prediction, the network receives
feedback on which attributes are actually observed for
that item/relation combination. Learning in the network
is driven by prediction error, that is, the discrepancy
between attributes that are predicted to be present, and
the attributes that are actually present. On each trial, after
prediction error is computed, and weights are changed
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Daisy
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Can

Animal
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Feathers
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Figure 1 Simplified diagram of the Rumelhart model.
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throughout the network in order to reduce prediction
error.

Specifically, Rumelhart used the backpropagation
neural network learning algorithm to adjust network
weights. For each unit in the network (except for item
and relation units), backpropagation computes a delta (!)-
value for that unit that indicates whether that unit was too
active (þ!) or not active enough ("!). First, backpropa-
gation computes !-values for attribute units; then it
computes !-values for each preceding layer (in turn) by
multiplying !-values by network weights. For example, if
an attribute unit has a positive !-value (i.e., it is too
strongly active), active hidden units with positive con-
nections to the overly active attributational unit are also
assigned positive !-values (indicating that they are ‘at
fault’ for the prediction error, and that prediction error
can be reduced by reducing the activity of hidden units).
After !-values have been assigned to all of the attribute-
layer, hidden-layer, and representation-layer units, back-
propagation changes network weights based on these
!-values: if a unit is too active, weights coming into that
unit (from active sending units) are reduced, and if a unit
is not active enough, weights coming into that unit (from
active sending units) are increased.

Successes of the Rumelhart model
After a sufficient degree of training, Rumelhart showed
that the model learns context-sensitive mappings between
items and attributes. For example, after training, activat-
ing the ‘pig’ item and the ‘has’ relation will activate the
‘skin’ and ‘hoofs’ attributes. If instead we activate the ‘pig’
and the ‘can’ attribute, the ‘walk’ attribute will activate
(and the ‘fly’ attribute will certainly not activate). This
context sensitivity arises because the relation units mod-
ify the activation in the hidden layer, which is responsible
for combining the activity in the representational and
relational layers before activating the attribute units.

The most interesting aspect of the Rumelhart model is
how internal representations (i.e., the patterns of activity
in the representation and hidden layers elicited by differ-
ent items) change during learning. Items with similar
attributes come to elicit similar patterns of activity in
the representation and hidden layers, and items with
distinct attributes come to elicit distinct patterns of activ-
ity in the representational and hidden layers. For
example, when training the sample Rumelhart model in
Figure 1, the representations for ‘pig’ and ‘chicken’ start
to converge, and these representations diverge together
from the representations for ‘iris’ and ‘daisy’ because (for
any given relation) ‘pig’ and ‘chicken’ are more likely to
share attributes than, say, ‘pig’ and ‘daisy.’ In this way, the
model learns just as a child would – by first forming a
coarse representation of the environment that is refined
over time based on experience.

A key property of the model is its ability to generalize
to new stimuli based on their similarity to previously
encountered stimuli. For example, after learning the var-
ious attributes of pigs and chickens, the Rumelhart
network will be able to predict basic properties of a new
animal, such as a cheetah, just by learning that it is an
animal. This is because training the network to predict
animal given cheetah will push the cheetah’s internal
representation closer to the representations of other
items that predict animal (e.g., pig and chicken). This
overlap in internal representations will lead to cheetah
predicting other attributes that were associated with pigs
and chickens (e.g., that cheetahs have skin and can walk).

Temporal Context and Semantic Relationships

The Rumelhart model modifies its internal representa-
tions based on explicit instruction concerning which
attributes should be active in a given context. Recently,
several researchers have argued that meaning representa-
tions can also be acquired without explicit instruction, if
the model keeps track of temporal context (i.e., it learns
which items tend to be presented close in time to a given
item). The key idea here is that items with similar mean-
ings tend to occur in similar temporal contexts (e.g., couch
and sofa both tend to occur close in time to other words
like rug, lamp, and cushion). Given this premise, it should
be possible to learn that couch and sofa have similar
meanings by learning about which other words tend to
co-occur with couch and sofa.

The Latent Semantic Analysis (LSA) algorithm devel-
oped by Landauer and colleagues provides a large-scale
proof of the relationship between meaning and temporal
context. Landauer and colleagues took a massive corpus
of English texts and computed how often each word co-
occurred in the same paragraph as every other word
(normalized to account for differences in overall word
frequency). The net product is a matrix of size N#N,
where N is the number of distinct words in the text
corpus. One way of thinking about this matrix is that
each word in the matrix is represented by a ‘temporal
context vector’ of length N, listing how often that word
occurred with every other word. In principle, it should be
possible to estimate the similarity of word meanings by
looking at the similarity of the N-dimensional temporal
context vectors associated with each word. However,
Landauer also had the insight that there is considerable
redundancy in the N#N co-occurrence matrix, and that
(because of this redundancy) words could be represented
by vectors with many fewer-than-N elements. To elim-
inate this redundancy, LSA applies a technique called
singular value decomposition (SVD) to the N#N matrix.
SVD returns a set of N orthogonal temporal context
vectors (each of size N), ranked by how much variance
they explain (across words) in the original matrix
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(technically, these are the eigenvectors of the original
matrix). Landauer found that the first 300 or so of these
vectors accounted for almost all of the variance in the
original matrix. As such, he discarded the remaining vec-
tors, and re-expressed each word’s temporal context
vector in terms of a weighted combination of these 300
‘basis vectors.’ The net result of this process to go from an
N-dimensional representation for each word to a (much
more manageable) 300-dimensional representation. Using
these 300-dimensional vectors, Landauer and colleagues
found that the cosine distances between these vectors map
quite well onto the similarity values that people assign to
pairs of words. For example, the cat and dog vectors are
quite similar to each other (i.e., their cosine distance is
very small), whereas the chicken and daisy vectors are not.

Importantly, while LSA substantiates the idea that
temporal context provides information about stimulus
meaning, it does not provide a mechanistic account of
how the brain exploits temporal context to acquire
semantic representations. Recently, Howard and collea-
gues argued that the TCM (described earlier) can meet
these desiderata. The previous section discussed how
TCM can account for episodic memory phenomena (by
rapidly binding items with coactive contextual features,
such that items can trigger recall of associated contexts
and vice versa). TCM can be extended to address seman-
tic learning by supplementing this rapid binding process
with another learning process that gradually (across trials)
learns which contextual features tend to be associated
with a given item.

Another important point is that, while temporal con-
text provides some information about word meanings,
LSA-like algorithms are not meant to be a substitute for
the kinds of error-driven learning that are built into the
Rumelhart model. Meanings learned by LSA do not
always coincide perfectly with human semantic judg-
ments (e.g., LSA tends to give antonyms very similar
meaning representations because they occur in similar
contexts). To remedy these misconceptions, models of
semantic memory need to receive feedback on how well
they are predicting the item’s attributes, and they need to
be able to learn based on prediction errors. One way to
update the Rumelhart model to take advantage of both
error-driven learning and temporal context information
would be (1) to include a representation of temporal
context (akin to the representation generated by TCM)
and (2) to train the model to predict the current state of
the temporal context representation (plus other relevant
attributes) when an item is presented. Forcing the model
to predict temporal context will bias the model to assign
similar internal representations to items with similar tem-
poral contexts (just as forcing the model to predict
attributes like ‘animal’ causes the model to assign similar
representations to all of the ‘animal’ items).

Finally, while the above discussion focused on tem-
poral context, other kinds of context also provide
information about stimulus meaning. For example, know-
ing that two items tend to appear at similar spatial
locations provides some information about their mean-
ings, irrespective of whether they appear close in time to
one another. The general principle of training models to
predict contextual information (be it temporal, spatial, or
some other type of information) will allow models of
semantic memory to leverage all of these regularities
when learning about meanings.

Learning, Memory, and the Brain

The previous sections focused on abstract models of epi-
sodic and semantic memory. This section describes the
CLS model, which intertwines episodic and semantic
memory into a single, neurally plausible computational
framework.

The Complementary Learning Systems (CLS)
Model

The CLS model (first outlined by McClelland,
McNaughton, and O’Reilly) incorporates several widely
held ideas about the division of labor between hippocam-
pus and neocortex that have been developed over many
years by many different researchers. (It is important to
note that the CLS model is only one of many biologically-
plausible models of the hippocampal role in learning and
memory. For example, see Further reading for other
influential hippocampal models by Gluck, Rolls,
Hasselmo, and Eichenbaum.) According to the CLS
model, the neocortex forms the substrate of our internal
model of the structure of the environment. In contrast, the
hippocampus is specialized for rapidly and automatically
memorizing patterns of cortical activity, so they can be
recalled later (based on partial cues). This characteriza-
tion makes it clear that neocortex is the key substrate for
semantic memory and that hippocampus is crucial for
episodic memory, although (as discussed below) both
structures contribute to both kinds of memory.

The model posits that the neocortex learns incremen-
tally; each training trial results in relatively small adaptive
changes in synaptic weights. These small changes allow
the cortex to adjust its internal model of the environment
gradually in response to new information. The other key
property of neocortex (according to the model) is that it
assigns similar representations to similar stimuli. Use of
overlapping representations allows cortex to represent
the shared structure of events, and therefore makes it
possible for cortex to generalize to novel stimuli based
on their similarity to previously experienced stimuli. In
contrast, the model posits that hippocampus assigns
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distinct, pattern-separated representations to stimuli,
irrespective of their similarity. This property allows the
hippocampus to memorize arbitrary patterns of cortical
activity associated with particular events rapidly without
suffering from unacceptably high (catastrophic) levels of
interference.

Norman and O’Reilly model of episodic memory
Norman and O’Reilly constructed hippocampal and cor-
tical networks that instantiate the CLS principles outlined
above, and applied these networks to simulating episodic
memory data. In both the hippocampal and cortical net-
works, to-be-memorized items are represented by
patterns of excitatory activity that are distributed across
multiple units (simulated neurons) in the network.
Excitatory activity spreads from unit to unit via posi-
tive-valued synaptic weights. The overall level of
excitatory activity in the network is controlled by a feed-
back-inhibition mechanism that samples the amount of
excitatory activity in a particular subregion of the model,
and sends back a proportional amount of inhibition.

The architecture of the model (illustrated in Figure 2)
reflects a broad consensus concerning key anatomical and
physiological characteristics of different hippocampal and
cortical subregions, and how these subregions contribute
to the overall goal of memorizing cortical patterns. The
entorhinal cortex (EC) contains a compressed representa-
tion of information represented elsewhere in cortex. The
hippocampal network memorizes patterns of EC activity

by linking these patterns to a set of units (an ‘episodic
representation’) in region CA3, which is then linked back
to EC via region CA1. When a pattern is presented,
connections are strengthened between active EC and
CA3 units, between active units within CA3, and between
active CA3 and CA1 units; collectively, these synaptic
modifications allow the network to recall entire stored EC
patterns based on partial cues (pattern completion). To
minimize interference, the network has a built-in bias to
assign relatively nonoverlapping (pattern separated) CA3
representations to different episodes. Pattern separation
occurs because of strong feedback inhibition in CA3,
which leads to sparse representations (i.e., representations
with relatively few neurons active). The dentate gyrus
(DG) assists in the pattern separation process by forming
an even more sparse representation of the EC pattern,
which then projects into region CA3.

The cortical component of the CLS model consists of
an input layer (corresponding to lower regions of the
cortical hierarchy) which projects in a feedforward fash-
ion to a hidden layer (corresponding to regions further up
in the hierarchy, including perirhinal cortex (PC) and
EC). As mentioned earlier, the main function of cortex
is to extract statistical regularities in the environment.
The two-layer CLS cortical network (where hidden
units compete to encode regularities that are present in
the input layer) is meant to capture this idea in the
simplest possible fashion. In the Norman and O’Reilly
simulations, learning in both the cortical and hippocam-
pal subregions of the model was implemented by means of
a simple Hebbian learning rule that strengthens connec-
tions between active sending and receiving neurons and
weakens connections between active receiving neurons
and inactive sending neurons.

As described by Norman and O’Reilly, the hippocam-
pal and cortical networks constitute a biologically based
dual-process model of recognition memory. As with the
dual-process REM model described earlier, the CLS
model posits that familiarity (i.e., global match) and recall
of specific details both contribute to recognition memory.
In the CLS model, hippocampus supports recall of spe-
cific studied details, but (because of its tendency to assign
distinct CA3 representations to stimuli, regardless of their
similarity) it is not well suited for computing the global
match of the test cue to studied items. The cortex, on the
other hand, does not learn quickly enough to support
recall of details from specific events, but it can compute
a scalar familiarity signal that tracks how well the test cue
matches studied items. As items are presented repeatedly,
their representations in the hidden layer of the cortical
network become sharper: novel stimuli weakly activate a
large number of hidden units, whereas previously pre-
sented stimuli strongly activate a relatively small number
of units. Sharpening occurs in the cortical model because
Hebbian learning specifically tunes some hidden units to

Hippocampus

Cortex

CA3 CA1

DG

EC_in

PC Input

EC_out

Figure 2 Architecture of the Norman and O’Reilly
Complementary Learning Systems model of episodic memory.
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represent the stimulus, and these units suppress the
activity of other units (via the feedback-inhibition
mechanism). Furthermore, since the cortex assigns similar
hidden representations to similar stimuli, these sharpen-
ing effects generalize smoothly to other stimuli based on
their similarity to the original stimulus (so sharpening
tracks global match).

Norman and O’Reilly showed how, taken together, the
hippocampal network and cortical network can explain a
wide range of behavioral findings from recognition and
recall list-learning experiments. For example, the model
can account for the null-recognition list-strength effect
described earlier, and it also makes the prediction that
list-strength effects should be observed when recognition
memory is driven by recall of specific details as opposed
to familiarity. Furthermore, because the CLS model maps
clearly onto the brain, it is possible to use the model to
address neuroscientific data in addition to (purely) beha-
vioral data. For example, the model correctly predicts
that focal hippocampal lesions should differentially
impair recognition performance on tests where distractors
are very similar to studied items (because these tests
benefit from the hippocampus’ ability to assign distinct
representations to similar patterns). The model also suc-
cessfully predicts that lesioned patients’ deficit on these
tests can be ameliorated by giving subjects a forced choice
between studied items and corresponding related lures
(because the forced-choice procedure allows subjects to
leverage small but reliable differences in cortical famil-
iarity between studied items and corresponding lures).

The original form of the CLS episodic memory model
also has some serious flaws. In particular, Bogacz and
Brown showed that the cortical network’s capacity for
familiarity discrimination (i.e., the number of studied
patterns that it can discriminate from nonstudied patterns
with 99% accuracy) falls far below the documented capa-
city of human recognition memory. This problem can be
traced back to the Hebbian learning rule, which is insuffi-
ciently judicious in how it adjusts synaptic strengths: it
strengthens synapses between co-active units even if the
memory is already strong enough to support recall, and it
weakens synapses between active receiving units and
other inactive units, even if those other units are not
interfering with recall of the sought-after memory. This
excess synaptic modification greatly increases the extent
to which new learning interferes with stored knowledge.
The solution to this problem is to switch to an error-
driven learning rule that compares top-down expecta-
tions (generated by cortex’s internal representation of
the environment) to sensory inputs, and only modifies
synapses when the model’s expectations are incorrect.
The backpropagation rule described earlier fits this
description, but this rule is widely believed to be biolo-
gically implausible. Determining biologically plausible
methods of enacting error-driven learning in cortex has

been a major focus of computational modeling research,
and researchers have devised a wide range of potential
solutions to this problem (see, e.g., the work of Carpenter
and Grossberg). Recently, Norman and colleagues
swapped out the Hebbian learning rule for a more judi-
cious, biologically plausible rule that uses neural
oscillations to probe for ‘weak points’ in cortical repre-
sentations; this new learning rule greatly improves the
cortical model’s familiarity discrimination capacity.

Toward a full episodic/semantic CLS model
The Norman and O’Reilly CLS simulations focused on
episodic memory. However, the CLS cortical model
(equipped with an error-driven learning rule) should be
able to account for all of the semantic learning phenom-
ena that were discussed in the Rumelhart model section
above; the key prerequisites for simulating these results
are a learning rule that is driven by prediction error, and
the ability to re-represent inputs in order to minimize
prediction error. CLS can also be used to explore how
hippocampo-cortical interactions shape semantic mem-
ory. One of the key claims made in the original
formulation of CLS was that hippocampus could play
back significant, once-presented events to the cortex dur-
ing sleep, thereby allowing the slow-learning cortical
network to absorb these events into its semantic network.
Recent modeling work by Norman, Newman, and Perotte
explored other aspects of learning during sleep (e.g., the
possibility that learning during REM sleep could help to
repair cortical memories that are damaged by new
learning).

Another feature missing from most CLS models is a
representation of context. Some CLS models have
included a simple context layer (akin to the one used in
the Rumelhart model), but none of these models have
seriously explored how temporal context is represented in
the brain. It seems likely that prefrontal cortex (PFC) will
play a key role in temporal context memory (by virtue of
its ability to actively maintain patterns of neural firing
over time). Other researchers have noted that the EC also
has some intrinsic ability to maintain information over
time. Future work using the CLS framework will explore
the contributions of both PFC and EC to representing
temporal context.

Key Challenges

Over the past several decades, a consensus has emerged
among computational modelers regarding certain key
aspects of memory functioning (e.g., how the hippocam-
pus supports episodic memory). However, there is still
extensive work to be done in specifying extant computa-
tional models of learning and memory. For example,
while there is widespread agreement that cortical learning
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is driven by a comparison of top-down expectations ver-
sus bottom-up inputs, there is still extensive debate
concerning precisely how the brain implements this
learning process. In addition, extant models have focused
on specifying basic encoding and retrieval processes, and
have not yet addressed fundamental issues with regard to
strategic influences on memory (e.g., how much to rely on
recall of specific details vs. familiarity when making
recognition decisions; how to strategically construct
retrieval cues during memory search). This latter issue
might benefit from a normative approach (i.e., mathema-
tically deriving how subjects should be cuing memory and
making decisions in order to maximize performance, and
then exploring whether subjects actually use these
‘optimal’ strategies).

Importantly, the models of episodic and semantic mem-
ory described above constitute only a small portion of the
total space of memory models. Other models have been
developed to account for data from other kinds of memory
tasks, such as working memory tasks (which ask subjects to
actively maintain stimulus information in the face of dis-
traction), conditioning tasks, spatial learning tasks, and
motor-learning tasks. These other models leverage some
of the same computational principles and neural systems
described above, but they also describe important ideas
that were not reviewed in the preceding sections. For
example, one topic that has received extensive attention
in recent years is how the brain leverages simple reinforce-
ment signals (rewards and punishments) to improve
behavior. Another topic that has received extensive
attention is the control of working memory (i.e., how
does the brain learn when to ‘gate’ information into
working memory and when to release it from working
memory; see the work of Frank, O’Reilly, and colleagues).

The key challenge, moving forward, will be to inte-
grate insights gleaned from all of these models while still
keeping model complexity within manageable limits.
Models like CLS are quite complex as they stand, and
the extensions proposed above (e.g., adding a PFC net-
work to CLS to help it maintain temporal context) will
make the models even more complex. The saving grace
here is that modern-day memory models can be used to
address an enormous range of findings – using a complex
model to explain a single result may not be all that mean-
ingful, but simultaneously accounting for behavioral and
neural data from multiple types of learning experiments is
still a worthy challenge. So long as modelers continue to
apply all available constraints to theory development, we
should continue to see steady progress toward a complete
computational account of learning and memory data.

See also: Declarative Memory; Episodic and
Autobiographical Memory: Psychological and Neural

Aspects; Learning and Memory: Computational Models;

Memory and Aging, Neural Basis of; Memory

Consolidation.
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